Draft List and Evaluation of Potential BDCP Analytical Tools **Note:** The following table describes analytical tools identified by the Analytical Tools Technical Team that are available and suitable for use by other working groups and technical teams conducting analyses in support of conservation measure development. The Team will update this table as additional analytical tools are identified or become available. With the concurrence of the Steering Committee, the Team will distribute this table to the appropriate working groups and technical teams and, as requested, provide support with the application of the tools. | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |------------------------------------|---------------------------|--|---|--|--------------| | Hydrology/
System
Operations | CALSIM II | System and Delta operations (incl. reservoirs, flows, X2, E:I, QWEST, OMR, salinity) | Monthly input, 82-yr simulation, mass-balance, ANN-approximation of salinity/X2 | Peer-reviewed, issues raised, but best tool available | DWR | | | CalLite | System and Delta operations (incl. reservoirs, flows, X2, E:I, QWEST, OMR, salinity) | Monthly input, 82-yr
simulation, mass-balance,
ANN-approximation of
salinity/X2, limited hydrology
detail in Sac Valley | Limited, based on the early-
stage of the tool | DWR/
USBR | | | Yuba River Basin
Model | HEC-5 model: includes inflows, demands, and fisheries flow requirements; monthly time step | Like CALSIM II it relies on
mass balance reservoir routing
logic; used for Yuba River, not
the Delta | TBD | TBD | | Hydrodynamics/
Water Quality | DSM2 | Delta hydrodynamics, salinity, gate operations | 1-D, 15-min, 16- to 82-yr simulations | Peer reviewed, no 2-D capabilities, dispersion approximated | DWR | | | RMA | Delta hydrodynamics, salinity, gate operations, levee failure and flooded islands simulation, residence time, particle transport | 2-D depth averaged and 1-D, medium duration simulations (up to 16 yrs), can be run with full Bay-Delta or Delta only configuration | Basic finite element
formulation available in
peer reviewed literature and
conference proceedings,
application to SF Bay-Delta
documented in reports to
CALFED and DWR | RMA | | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |----------------|--|--|--|--|--| | | RMA Tidally Averaged Delta Transport Model (component of DRMS Water Analysis Module) | Tidally Averaged Delta flow and salt transport, gate operations, levee failure simulation | Simplified 1-D geometry based on full RMA model, calibration of tidally averaged dispersion coefficients based on 3-D results, very fast simulation | Basic finite element formulation available in peer reviewed literature and conference proceedings, configuration and application for the Delta is documented in the DRMS report on the Water Analysis Module, new model and not yet fully accepted | RMA | | | Si3D | Delta hydrodynamics, salinity, gate operations | 2-D, short duration simulations | TBD | Pete Smith,
USGS | | | Trim2D | Delta hydrodynamics, salinity, gate operations | 2-D, short duration simulations | TBD | Cheng,
Smith | | | Trim3D | San Francisco Bay and Western
Delta hydrodynamics, salinity, | 3-D, short duration simulations, focus of model is Bay and Western Delta, interior of the Delta is represented as simple channels with equivalent tidal prism, regular grid | Model formulation and application to SF Bay is peer reviewed. | Ed Gross | | | Reclamation Water temperature model | Water temperatures in Sacramento, Feather, and American rivers | Have both reservoir and river components for predictions | TBD | Bureau of
Reclamation | | | DRMS Delta model | TBD | TBD | TBD | RMA | | | DWR Particle tracking work | Estimates entrainment of neutrally buoyant particles as a function of Old & Middle rivers flow and QWEST | TBD | TBD | DWR | | Process Models | DRERIP | Identifies restoration actions;
Evaluates restoration actions;
Identifies unintended outcomes
and scores magnitude and
certainty (qualitatively) of both
positive and negative outcomes | Not all models are complete to date; Those models that have not completed the peer-review process may require consultation with experts during the evaluation process to maintain scientific integrity | High, but not all have been peer-reviewed to date | Brad
Burkholder/
Steve
Detwiler | | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |-----------|--|--|---|---|---| | | Viable Salmonid
Population
framework (VSP) | Determines viability of salmonid populations based on key demographic variables: abundance, population growth rate/productivity, spatial structure, and genetic variability | May require outside experts;
may need to be deconstructed
for BDCP purposes (Delta-
specific); applies to individual
populations, not entire ESUs | TBD | NMFS | | | Population Viability
Analysis (PVA);
3 approaches: Leslie
matrix, state space
models, individual-
based | Evaluates the likelihood that a population will persist for a given time into the future; can be used on multiple species if assumptions are met | Major assumptions: (1) accurate population estimates are available; (2) no density dependence; approach used depends on availability of data; many caveats and concerns associated with PVA | High | Multiple | | | Delta smelt model (Sitts) | Predicts entrainment of delta smelt at SWP/CVP facilities and relates to population level effects; stage-structured population level model; can explore effects of variation in Old and Middle rivers flows, hydrologic regime, gear efficiency, pre-screen losses, abundance estimates, and survival estimates; Excel-based; daily time step; has hydrologic module | Uncertainty in abundance,
survival rates, gear and screen
efficiency; based on existing
fish data; only deterministic, but
stochasticity can be easily added | Unknown (manuscript in preparation) | Rick Sitts | | | Winter-run Chinook
Integrated Modeling
Framework v.2.0 | Predicts population-level response to upstream habitat actions, flows, exports, temperatures, DCC gate position, turbidity, ocean harvest, salinity and mark-selective fishery effects; Gold-Sim based; all life stages; Assesses benefits of mark-select fisheries | Uncertainty regarding Sacramento River and Delta survival rates and adult returns; based on existing monitoring data | Unknown (manuscript in
preparation); Continually
updated with new
monitoring data; used by
IEP work teams | Cramer Fish
Sciences &
Rick Sitts | | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |-----------|---|--|---|------------------------------------|--------------------------| | | Delta Salmon
survival model
(Newman-Rice) | Predicts survival rates of
juvenile salmon in the Delta
based on release temperatures,
turbidity, flow/salinity, DCC
gate position, release location of
fish | Not meant as stand-alone model, based on correlations | Published multiple iterations | Newman & Rice | | | Reclamation Salmon mortality model | Provides estimates of early life
stage (pre-spawned and fertilized
eggs, pre-emerging fry)
mortality; Sacramento River:
fall, late-fall, winter, and spring
run, American River: fall run
only | Based on temperature model output | TBD | Bureau of
Reclamation | | | Salmon escapement
model (DFG) | Numeric model developed for
San Joaquin Basin Fall run
Chinook salmon; Describes
relationship between San
Joaquin River flow and
production | TBD | Yes | Dean
Marston,
DFG | | | Sacramento River
Ecological Flows
Tool (SacEFT) | Decision analysis tool based on
conceptual models to evaluate
flow based management actions
on a set of focal species | Based on upper Sacramento River (upstream of Colusa), needs work to be applicable to Delta; outcomes based on CALSIM output | Unknown (just released) | Ryan Luster,
TNC | | | SALMOD | Determines effects of physical habitat on salmonid mortality and location | Has been previously applied to each race of salmon on Sacramento River; may be applicable to upstream of Delta only; only sees a linear stream with no tributaries or branches possible | High, multiple publications | USGS | | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |---------------------|--|--|---|-------------------------------------|-------------------------------| | | Fish salvage model | Calculates direct losses at Skinner Fish Protection Facility and Tracy Fish Collection Facility; uses historical fish salvage data for a specified period of record to construct baseline against which to evaluate alternatives | Direct losses resulting from
export operations are function
of monthly water exports from
each facility and density of fish
(number per acre-foot)
vulnerable to entrainment | TBD | TBD | | Statistical Correla | | | | | | | Delta smelt | Exports and San Joaquin flow vs. delta smelt salvage in winter (Guerin et al.) | Identifies relationship between exports, San Joaquin flows and winter delta smelt salvage | Valid for winter adult salvage,
relates directly to export and
SJR flows for broad periods
(monthly averages) | Unknown (manuscript in preparation) | CCWD | | | Turbidity vs. delta
smelt spatial patterns
(Smith) | Identifies spatial patterns of turbidity and delta smelt abundance | Correlation only | TBD | TBD | | | Old and Middle River
flow vs. adult delta
smelt salvage
(Manly) | Identifies positive correlation
between magnitude of reverse
flows and other factors such as
Sacramento flow levels and pre-
spawned delta smelt adults
salvaged during Dec-Jan.
Another correlation is valid
during Feb-Mar. | Correlation only. Uses previous FMWT or Spring population estimate to normalize estimated salvage. | Unknown (manuscript in preparation) | Brian
Manly, Rick
Sitts | | | Delta smelt percent
of population in the
southeast Delta | Estimating vulnerability of larval and juvenile delta smelt to entrainment at the pumps. | Correlation only. Abundance estimates. | Unknown (manuscript in preparation) | Bryan
Manly, Rick
Sitts | | | Winter exports or
SWP winter salvage
of delta smelt vs.
subsequent fall
midwater trawl for
delta smelt (Guerin et
al.) | Suggests relationships between winter export level, SWP winter salvage, or SWP winter salvage normalized to prior FMWT for delta and longfin smelt and subsequent FMWT levels for delta and longfin smelt | Requires salvage level or export level, previous FMWT, current Delta configuration, regulatory status | Unknown (manuscript in preparation) | CCWD | | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |------------------|---|---|--|------------------------------------|---------------------------------------| | | Summer/fall habitat
variables vs. delta
smelt (Feyrer et al.
2007, Nobriga et al.
in press) | Identifies salinity and turbidity
as important physical variables
influencing delta smelt
occurrence | Depends on spatial scale; based on existing monitoring data | High | Fred Feyrer,
Matt
Nobriga | | | Fish-food vs delta
smelt FMWT (Miller
et al) | Relates composite of the product of delta smelt population and food level to subsequent FMWT | Need fish and food density by location | TBD | B.J. Miller | | | Juvenile mortality vs. various factors | Relates juvenile salvage at
CVP/SWP facilities to various
factors, all pointing to food
limitation at early smelt stages | TBD | TBD | Bryan
Manly | | | Juvenile salvage vs.
zooplankton in south
Delta | Links juvenile smelt salvage to
zooplankton in the south Delta,
implies that food supply may
limit smelt population in spring | TBD | TBD | Lenny
Grimaldo | | | Smelt abundance vs. exports | Attempts to find a correlation between smelt abundance and exports | TBD | TBD | Brian
Manly,
Mike
Chotkowski | | Longfin smelt | Winter/spring
outflow vs. longfin
smelt | Identifies positive relationship
between winter/spring outflow
and longfin smelt abundance | Mechanism of correlation is
unknown; relationship holds up
before and after <i>Corbula</i>
invasion, and potentially during
POD | High | IEP | | Multiple species | Fish salvage vs.
water exports | Predicts monthly salvage of
multiple species at SWP/CVP
facilities based on export
volumes and density of fish | Based on relationships of
historical salvage vs. exports
and fish density; based on
current configuration/ facilities;
monthly time step | TBD | DFG/
Reclamation | | | Flow index vs. fish index (Swanson et al) | Identifies relationship between
normalized composite flow
relationship and normalized
composite fish index for FMWT
species | Uses several common flow parameters, relates to composite fish index | Unknown (Draft) | ТВІ | ## BDCP Steering Committee February 22, 2008 | Tool Type | Name | Applications | Key Assumptions and
Uncertainties | Level of Acceptance/Peer
Review | Caretaker | |-----------|--|---|---|------------------------------------|--| | | X2 (Various) | Relates Feb-June location of X2 with subsequent fish population indices | Relates Feb-June X2 to fish population levels, pre- and post-clam | High | Generally
available,
most recent
from IEP | | | K-M X2 equation | Predicts X2 location | Estimates current X2 position as a function of Delta outflow and previous X2 position | High | Wim
Kimmerer,
others | | | G-model | Predicts western Delta salinity | Estimates western Delta salinity as a function of antecedent Delta outflow | High | Richard
Denton,
CCWD | | | Suisun Marsh
Salinity Control
Gates vs. salinity | Indicates effect of Suisun Marsh
Salinity Control Gates on
salinity when baseline X2
location has already intruded to
the confluence or above | TBD | TBD | Wim
Kimmerer | TBD = To be determined.